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ABSTRACT 

This research summarizes various approaches to multilevel decomposition to solve 
large structural problems. A linear decomposition scheme based on the Sobieski 
algorithm is selected as a vehicle for automated synthesis of a complete vehicle 
configuration in a parallel processing environment. The research is in a developmental 
stage. Preliminary numerical results are presented for several example problems. 

NOMENCLATURE 

"ijk - j" subsystem at level i with parent k at level (i-1) 

- vector of design variables for SS.. Xijk 
1Jk 

~ 

Y iJk - vector of design parameters for SSijk 

I - cumulative constraint violation function for SS.. Cijk (Xijk,yijk) 
1Jk 

F'J~ (xijk,yiJk) - penalty function for ssijk 

fijk (Xijk,yijk) - objective function for SS,, 

ijk 
gw (xijk,yiJk) - vector of inequality constraints for SS.. 

1Jk 

h y  (Xijk,yijk) - vector of equality constraints for SS.. 
1Jk 

KS - Kresselmeir - Steinhauser function 

INTRODUCTION 

A modern vehicle (aircraft or automobile) is a complex engineering system 
composed of many subsystems that are tightly coupled. Often, the number of design 
variables involved and constraints imposed is large. The total amount of data handled 
becomes so large that synthesis of such a system is both intractable and costly and can 
easily saturate even the most advanced supercomputers available today. A remedy is to 
break the large problem into several manageably smaller subproblems; and solve these 
subproblems independently without loosing integrity with the main or parent problem and 
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ultimately achieve satisfactory results for the original problem. This method of problem 
solving is known as decomposition. 

Decomposition is the technique of dividing a large task into a set of 
smaller, sev-contained subtasks that can be solved concurrently [ 1 1. 

In a multilevel decomposition technique, the main structure at the top level is 
decomposed into a hierarchical tree consisting of substructures at different levels. A 
typical multilevel decomposition tree is shown in Figure 1. The main advantage of the 
multilevel optimization scheme lies in the fact that all substructures can be analyzed and 
optimized independently with convenient coupling. This application makes such an 
algorithm appropriate for parallel computing technology existing today. 

Several studies have been devoted to the decomposition of large-scale optimization 
problems [2]. Mainly two classes of decomposition methods exist: formal methods and 
intuitive methods. Formal methods decompose a problem using its mathematical 
structure. Such a decomposition may be fully automatic and can be built-in within the 
design cycle. However, in intuitive methods, an understanding of the physics of the system 
is the prime factor directing the decomposition. These intuitive methods provide an 
alternative for decomposing those problems which do not possess the structure for which 
a formal decomposition method exists. 

sq,, is tho fh Subryrtom at Iovol I with psront k at level (1-1) I (  
Figure 1 

A general, Multilevel Decomposition Tree 
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PARALLEL PROCESSING 
In a broader sense, the terms parallel computing or concurrent processing are used to 

define simultaneous execution of multiple tasks on multiple CPUs. This is achieved either 
by synchronizing the tasks on a multiprocessor or by effectively distributing the tasks 
among a network of computers. Parallel computing operations are classified in a number 
of ways depending upon the architecture of available computing resources and the 
granularity of the applications. 

Flynn [3] has divided computer architectures from a macroscopic point of view using 
stream concept. Stream in this context simply means a sequence of items (instructions or 
data) as executed or operated on by a processor. The four broad classifications of machine 
organizations are: 

(1) The Single Instruction stream - Single Data stream (SISD), which 
represents most conventional, uni-processor computing equipments available 
today. 

(2) The Single Instruction stream - Multiple Data stream (SIMD), which 
includes most array processors; for example, Illiac IV. 

( 3 )  The Multiple Instruction stream - Single Data stream (MISD) type 
organizations; for example pipeline computers like CYBER 205. 

(4) The Multiple Instruction stream - Multiple Data stream (MIMD) 
machines, which include the multiprocessor systems and distributed computing 
networks. It is possible to classify the MIMD architecture further according 
to coupling of the multiple processors as Tightly-Coupled and Closely- 
Coupled s ys tems. 

Various parallel computing applications are also classified based on granularity 
ranging from infinite grain size to very fine grain size. Granularity is measured by 
synchronization interval which is in fact the period between synchronization events 
measured in number of instructions for multiple processors or processing elements. 

Concurrent processing computers set new demands on data structure, data 
management, organization, program coding, and adaptability considerations. These 
computers offer the possibility for significant gains in computational speed for structural 
synthesis based on multilevel optimization. Experience in parallel processing on NASA 
Langley’s first multiple instruction, multiple data (MIMD) computer has shown that the 
greatest computational gains are obtained by writing special-purpose codes based on 
“rethinking” the solution method; somewhat smaller gains have resulted from “recoding” 
an existing algorithm, and no gain has resulted from the approach of just running an 
existing program on a parallel computer [4]. 
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In recent years, significant research effort has been reported in applying linear and 
nonlinear finite element algorithms on concurrent processing computers using 
substructuring methods. Kowalik [5 ]  has projected the potential for impact of parallel 
computers on numerical algorithms. Lootsma and Ragsdell [6] have described the state- 
of-the-art work in parallel nonlinear optimization area. A unique feature of this research 
is that this is the first attempt to implement a multilevel decomposition code on a network 
of computers. For this a VAX 8650 will be used as a host to load applications on a 
number of microvax stations available in a network of computers at the Design 
Productivity Center, University of Missouri, Columbia. 

MULTILEVEL DECOMPOSITION 

Most of the multilevel optimization algorithms developed so far involve intuitive or 
physical decomposition of the large-scale system into its component subsystems. All these 
algorithms exhibit a general philosophy of design. The subsystems are designed separately 
as component level synthesis problems. Then, the main system and all the subsystems are 
coupled appropriately and synthesized so as to achieve overall convergence of the system. 
A few approaches to multilevel decomposition are described now. 

Review of Multilevel Decomposition AlPorithmS 

Lucien Schmit Jr. and Ramanathan [7] introduced a multilevel approach to the design 
of minimum weight structures so as to include both local and global buckling of the 
elements and the system. In a two-level formulation of their decomposition algorithm, 
they treated total structural weight as the system level objective function whereas at 
component level, instead of component weight as an objective function, they considered 
minimization of change in equivalent system stiffness of the component. This is due to the 
fact that a structure made up of minimum weight components is not necessarily a 
minimum weight system. Schmit & Ramanathan observed that an efficient multilevel 
decomposition scheme should inherently lead to a weaker and weaker coupling between 
the subsystems as the iterations proceed. 

Another interesting decomposition approach is by Uri Kirsch [8]. In this approach, 
the design quantities are divided into a set of dependent design variables and another set of 
independent quantities called behavior variables. The design variables and the behavior 
variables are optimized at different levels leading to a minimum two-level optimization 
algorithm. In the proposed scheme, the top level system is decomposed into a number of 
subsystems as second level problems. At the first level, dependent design variables are 
optimized for any assumed behavior (independent) variables. Then, at second level 
behavior quantities are optimized for each subsystem separately. The third level is an 
optional level in which elastic analysis is repeated only after a complete solution of both 
the first and the second levels. The main advantages of this algorithm are that the number 
of elastic analyses required is small, the first level is decomposable and the number of 
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independent variables is not affected by the number of loading conditions the structure is 
subjected to. 

One of the most irksome problems with the multilevel or hierarchical decomposition 
approach is the discontinuous behavior of derivatives that is transferred from the lower 
levels of the hierarchy to the upper levels. Raphael Haftka [9] has proposed a hierarchical 
algorithm that is free of such difficulties. In this algorithm, a penalty function method is 
employed in combination with Newton's method with approximate second derivatives to 
perform the optimization. 

I 

Jaroslaw Sobieski at NASA Langley Researchcenter proposed an intuitive scheme of 
multilevel decomposition in 1982 which is not only versatile but also convenient. In the 
Sobieski approach, a large-scale system is physically decomposed into a number of 
subsystems at multiple levels with the complex system at the top level and the detailed most 
elements at the lower most level. For each subsystem the design space is divided into a set 
of constant design parameters and another set of design variables. A unique feature of 
the algorithm is Optimum Sensitivity Analysis (OSA). Sensitivity of the subsystems to 
problem parameters is determined and this information provides for the vertical coupling 
between a subsystem and its parent subsystem. In order to optimize a complete vehicle 
configuration, the Sobieski algorithm is selected as a vehicle for structural synthesis [lo]. 

ODtimum Sensitivitv Anal- . *  * 

In a multilevel decomposition algorithm it is essential to estimate the sensitivity of a 
problem at its optimum to the assumed constant parameters of the problem. This 
information provides for necessary coupling between various subsystems in the 
decomposition tree. The optimum sensitivity coefficients are essentially the Lagrange 
Multipliers. Numerically, they correspond to total derivatives of the objective function 
and the design variables with respect to the design parameters. A number of methods have 
been developed to compute the sensitivity coefficients directly. These methods include: 
Lagrange multiplier method, penalty function methods, feasible directions methods with 
the extension of the latter method to incorporate higher order coefficients and 
discontinuities. 

In the Lagrange multiplier method [ 113, one starts with the Kuhn-Tucker conditions 
for a constrained minimum. Noting that the optimum value of the design variable is given 
by x* = x*(y) where, y is the vector of design parameters, one can differentiate the Kuhn- 
Tucker conditions with respect to y, using the chain rule of partial differentiation. On 
simplification, we get a set of simultaneous linear equations with the sensitivity 

derivatives riy*) - as unknowns. 

I 

In the penalty function methods, the penalty function: F(x,y) = f(x,y) + rP is 
differentiated with respect to the design parameter y. Here, f is the objective function, r is 
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the penalty parameter and P is the penalty term which could be either an interior function, 
or an exterior function or in case of coupled constraints, a Kresselmeir - Steinhauser 
function which is essentially the envelope of the constraint surface. Depending upon the 
choice of penalty term, different sets of linear equations can be developed to solve for the 
unknown sensitivity values. Optimum sensitivity analysis based on penalty function 
formulation is adopted in this research. 

For o r h  Sg,, , idontify 

X, v, 9, h, C, F 

Vanderplaats [12] has developed algorithm based on the method of feasible 
directions to compute linear and higher order sensitivity coefficients. 

The Sobieski Algorithm 

The Sobieski algorithm for multilevel decomposition is depicted in an easy to 
comprehend flow chart as shown in Figure 2. 

ULTILEVEL DECOMPOSITION ALGORITHM 

1 

t Anaiyzo oil SS,, 

1 
Porform Optimizatlon and 

OSA lor all SQlk - Convorgonco 7 

Figure 2 
A Flow Chart for Multilevel Decomposition 
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The system S=SSllo is decomposed into a number of subsystems SSijk. The design 

variables and the design parameters for the subsystems are xiJk and yijk respectively. The 
design variables at the system level are essentially a set of design parameters for all the 
subsystems. The design procedure begins with initializing the design and analyzing all the 
subsystems. The objective functions for subsystem optimization are formulated by a 
cumulative constraint violation function CiJk using, for example, a Kresselmeir- 
Steinhauser function of the form: 

1 

V L 

During the system optimization, when the design variables x1l0 are perturbed, the 
changes in subsystem objective function and design variables can be predicted using linear I 

I the Taylor series extrapolation: 

are the total derivatives computed by Optimum Sensitivity 
where, { zly} and { 

Analysis. The procedure terminates when, (i) system response constraints are met, (ii) 
cumulative constraint violation for all the subsystems is reduced to at least zero and (iii) 
no further reduction of system mass appears possible. 

EXAMPLES 

The multilevel decomposition algorithm based on the Sobieski approach is being 
coded on VAX 8650 using FORTRAN 77 in double precision. In order to check the 
validity of the OSA algorithm and the multilevel decomposition algorithm various 
example problems have been set up. Closed-form analyses are generated for a three-bar 
truss problem and a portal frame involving beam elements. A highly simplified finite 
element model of an automobile configuration is also created using beam elements. 
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The optimum sensitivity analysis is applied to a simple Three-Bar Truss (Figure 3), 
where the design variables are the areas of cross-section and the design parameters are the 
applied load P and the angle a which P makes with the y-axis. The weight of the 
structure is to be optimized with respect to the design variables. The behavior constraints 
correspond to simple upper and lower limits on stresses within the rods while the variable 
bounds ensure nonnegative areas of cross-section. Numerical results, shown in Figure 4, 
are in agreement with published results. 

Penalty Function Feasible Directioi 
based Algorithm based Algorithm 

3.944 10” 4.428 10” 

2.0404 x lo’’ 6.711 x 10’‘ 

1.319 l o 4  1.319~ 10.‘ 

-0.885 -0.479 

0.980 -0.169 

-1.524 -1.524 

A 
0 

I 

Figure 3 
A Three-Bar Truss 

ptimum Sensitivity Analysis 

Direct 

Figure 4 
Three-bar Truss Results 
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A portal frame with three beam elements is selected for testing the two-level 
decomposition algorithm. Figure 5 displays the complete frame as a top level system 
whereas, the individual beam elements are three subsystems for the problem. The portal 
frame structural weight is minimized subject to stress, deflection and buckling constraints. 
The simple statically indeterminate frame is analyzed using a variational method based on 
the minimization of the total complementary energy functional. Figure 6 shows the 
iteration history for “one-level” optimization versus “two-level’’ optimization. 

V 

(Seetion] 

I 
I 

8 I I 

I I 

[ Portal Frame Decomposition 1 9 
Figure 5 

Portal Frame Problem 
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I 

I 
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History of Objective Function 

I- 

- One Level Opt - Load Case 1 
--c Load Case2  

( It era t i on s) 

V = Objective Function value for Two Level Optimization 
Vo = Objective Function value for One Level Optimization 

I (Portal Frame Decomposition Results ] 

Figure 6 
Portal Frame- Decomposition Results 

urn Vehicle Configyration Problem . . 
A major objective of the study is to demonstrate the applicability of the multilevel 

decomposition algorithm to produce an optimum automobile configuration from a 
generic model of a complete automotive structure. As a first step in this direction, a 
simplified uniframe car model is developed [ 131. Figure 7 shows the car frame selected to 
develop a simplified finite element model containing 22 nodes with 33 beam elements. 
The model is being studied for its static and dynamic response using NASTRAN. The 
automobile configuration is ideally suited for multilevel decomposition. In a three level 
decomposition strategy, the complete frame is selected as the top level which is 
decomposed into three middle level subsystems as shown in Figure 8. The third or bottom 
level corresponds to a box beam cross section. 
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1 1  Uniframe Car Decomposition 

Figure 7 
Uniframe Car Model 

Figure 8 
Second Level of Decomposition 



CLOSURE 

Multilevel decomposition is a multidisciplinary area. Here, we have concentrated on 
the study of large-scale structural synthesis in a parallel computing environment. A long 
term commitment to research in this area will have a significant impact on the design 
productivity of the automobile and aerospace industry of the future. 
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